ICPC Europe Contests

europe N e : T i é”é
ﬁ \z/) IC international collegiate — HUAWE |
g = p rog ra m m i ng Co n teSt icpc global sponsor icpc diamond

2000 iCpC.fOU ndation programming tools multi-regional sponsor

Central Europe Regional Contest

ICPC CERC 2022

Solution Presentation

University of Ljubljana
Faculty of Computer and Information Science

Ljubljana, 27. 11. 2022

1000
|G Intermationai Collegiate
p Programming Contest

L - The Game

Simulate the described card game.

* maintain lists of cards:
— rows, hand, deck

e careful implementation
— prioritize backward moves
— choose best regular move
» sort by (abs. difference, hand, row)

rOwWS : hand: 16, 55, 70, 67, 13, 9, 12, 40
1, 3

1, 7, 8, 9 deck: 14, %6, 31, 33,

100, 60, 70

100 :)

|cpC

D - Deforestation

Cut a tree into parts of size at most W using fewest cuts.

recursive input
greedy strategy

prune the tree from leaves towards the root
— cut off part of size W

node with “stumps” of sizes x, < W
— > X% >W --> cut off largest stumps
— > X% <W --> cut up parent branch

solve(a) ... optimal cutting of subtree rooted in a
— minimum number of cuts Bl
— remaining size of the stump

e i §
O(n log n)] :)

— C h ad | | en ge : O (]) [CPC oo

E - Denormalization

Undo normalization of a list of small integers.

too many possible vector lengths ... d=V(} a?)
intermediate step: normalize to min=1 (divide by k=min(a))
a= 5 6 10 15 30 6

min = 1.000 1.196 1.993 2.993 5.978 1.196
x/norm = 0.138 0.165 0.275 0.413 0.825 0.165

reverse direction
— norm -> min: divide by min(x)
— min->a:
* a3 =min -k, 1<k<10000
* find integer k that yields a, that are closest to integer values and in range
* O(AN)
making an assumption about the value of min(a) or max(a) n :)

icpe

C - Constellations

Compute hierarchical clustering of points using squared
Euclidean distance.

A+B - C
brute-force: 8{x>} O(n3) , \\
constellation ... list of stars ,’I®\ @
priority queue of potential constellations | , \

— (distance, min(a,b), max(a,b)) : :
merge, update distances \ B ! 5
d'(4,B) = TqTylla— bl \ @ i

/
d'(A+B,0) =d'(4,C) +d'(B,c) \\ /! @
O(n? log n) ST

— form O(n) constellations
— update O(n) distances in O(log n) -

G - Greedy Drawers

Construct a counterexample for a greedy assignment of
notebooks to drawers.

* does a notebook fit into a drawer?
— horizontal orientation |

* possible counterexample:
— notebooks of dimensions (1,x), (2,x-1), ..., (x,X)
— a drawer can contain a range of notebooks
— 50% chance of suboptimal assignment
— repeat the pattern

e prob. of success (greedy finds suboptimal solution):
— single case: p, = 1 - 0.5(150/8) :
— all 20 cases: p = p,29 =99.995%)

|cpc

K - Skills in Pills

Find an arrangement with a minimum number of pills that
avoids taking two pills on the same day.

if we could take both pills on the same day
— take a pill as late as possible (pill A every k-th day and B every j-th)

resolve first “collision”
— shift one of the pills one day back; which one?

e.g. A=2, B=3, N=8 A|lB | A AB
take Aearly | A | B | A 6 pills
takeBearly | B | A AB | 7 pills

dynamic programming

— f(n, AB) ... min number of pills taken in the remaining n days if we take pills A
and B in this order in preceding two days

— compute next collision

~ 0f(n) 1 :)
challenge: sublinear greedy solution icpos:

B - Combination Locks

Find the winner in a two-player game with non-repeating
states

Hypercube graph

— node = difference pattern, forbidden nodes

— can move to any adjacent node

— bipartite
alternatingly building a simple path in a graph
possible strategy: following edges in a maximum matching

maximum matching that doesn’t include the starting node?
— Yes: Bob can follow matched edges
e stuck at unmatched node -> there would exist an augmenting path

— No: Alice can follow matched edges .
* stuck at unmatched node -> flip edges, get an unmatched start node@)

r I IG
ICPG o

F - Differences

Find a string with Hamming distance K to all other strings.

S,=CA, S={AB, BA, AB, CA, CA, CC}
O(n?) too slow i=0 i=1

precompute sets of strings that have :f {2'2} :f {(1),32»4}
character c at position j ... f(j,c) {1} 10,2}

C: {3,455} C:{5}
sets of strings differing from string S, at

each position j (union) {0,1,2} {0,2,5}
Hamming distances from S, d=12,1,2,0,0,1]
speed-up:

_ _ goal: [K, K, K, O, K, K]
— use bit masks to represent sets of strings?

— use polynomial hashes ... O(nm)
* e.g., f(0,A) = (p%+p?) % mod, g(j) =3 f(j,A)
Sy - 2; 8(1) — (i, S, ;) should be equal to 3, Kp' - p* h3 :)

icpc =

| - Money Laundering

Compute individual’s ownership shares in a network of
company ownerships.

simulate redistribution
— X=[Xg, e, X] o

vector of company incomes
— redistribution matrix A, x’ = Ax
— A, ... share received by i from j
— Ak convergesto 0

]

accumulate output values
— 0=X+Ax+AX+..
a) geometric series
e o=(I-A)lx

1
P
£
'l
1
1
1
1

* inverse (Gauss—Jordan elimination)
b) power method

A 0
* y=[Xqy -, X, Og) -y 0,]T, B=l]
e vy’ =By, Bbig ... exponentiation by squaring

Gul

|cpc

| - Money Laundering

industrial sectors = strongly connected components

— Tarjan, Kosaraju, ...

— small!

— ownership structure (income) from preceding companies

* matrix X: X;; ... income received by company i from company |

— extract submatrix of X relevant to the SCC (dim. S x C)

— propagate income within SCC

— distribute to persons and companies

o(¢/ss*+kc¢ b
— C...companies O/’ """ P
— K...edges o || @ O
— S ... max size of SCC O S T D
““““““ T @Bem

J - Mortgage

Given the monthly incomes, compute the largest monthly
payment that you can afford in the range of months [L ... R].

a) algebraic approach sj = i —jx
* consider a fixed payment x 7

— b, = balance on day | bj:sj_SL—IZ;“f—(j—LJrl)ﬂ?

— range minimum query (tree) b; >0=s;>s, 1= 32[111,1}3] ;> 81
* unknown x?

— s(x) is a linear function of x &

— store lower envelopes s’(x) of s,(x) in each node
— binary search for x in each range: s(x) 2 s, ;(x)
* 5., is the flattest

— O(nlogn+ mlog?n)

J - Mortgage

b) geometric approach
— points (i, ¢;), ¢ =319

— query [L, R] ... steepest line
originating from L-1

* partition points into groups
— lower hull
— tree structure of groups
* O(n) groups overall
* O(log n) groups cover every query range
* binary searchin a group

— max prefix of the hull with segments
that are clockwise to the line from L-1

e careful with overflows
* O(nlogn+mlog?n)

|cpC

A - Bandits

Protect nodes in a tree at a distance at most r from X and
answer queries about the level of protection of road Y.

e centroid decomposition

* new security contract at X with radiusr
— mark parts of the tree as protected ... O(log? n)
— store affected distance in a tree structure

r-d(X,C)

/(\ B /\?Cf r-d(X,B)

r-d(X,A)

*excluding subtree of X

\& J Y Bum

A - Bandits

* coverage of edge U-V with length |
— V... more important centroid
— protection originating from subcomponents of V (U, X, A), entering via U

e # of markings > 1+ d(U,A) [excluding subtree of X]
— protection from large components (e.g. C) containing U and V
» # of markings =1+ min(d(U,C), d(V,C)) [excluding subtree of B]
 0O(Qlog?N)

(- c)

>+ d(U,A)
*excluding
subtree of X

- %) Bum

H - Insertions

Insert string T into S to maximize the number of patterns P.

e consider all insertions after k chars

e countPinSandT, subtract those broken by insertion
— KMP ... locationsof PinSand T

Sik] <P X T S[k:]

a) small patterns |P|<|T|
— p =len. of longest prefix of P as a suffix of S[:k] (KMP search phase)
* isthere an appropriate suffix of P (of length x=|P|-p) in T?
— len. of longest suffix of P ending in T[L] (z-algorithm) equal to L?
 precompute matches for shorter prefixes (KMP fail. fun.) . :
—O(IS| + 1T + [P]) Bu®

H - Insertions

I R — T o S[k:]

b) large patterns |P| > |T|
— can expand across entire T
e does T match with shifted P? KMP search forTin P

— how many prefixes of P at the end of S[:k] match with
suffixes of P at the start of S[k:]?

* consider all pairs of shorter prefixes and suffixes ... O(|S|-|P|?)

 consider only shorter prefixes ... O(|S]|-|P])
— asinthe case for small patterns (z-algorithm)

Gul

|cpC

H - Insertions

* trees of KMP failure functions f(i) of P and g(j) P®

e

— X(i,j) = number of matching nodes (correct sum of length) on paths from
i and j to the root

— x(i,j) = x(i,g(j)) + match;(i) = x(f(i),j) + match(j)
— precomputation ... O(|P|1>)
* x(i, 0)
* x(i’, j) for well-positioned special nodes i’ (including root)
— subtrees of size sqrt(n)
* x(i,j) ... move towards root to first special node (< sqrt(n)) .
.

* O(IS[+[T[+[P[*®)

|C (G Iotermationai Collegiate
p Programming Contest

The End

regionals

